Kernelization Lower Bounds By Cross-Composition

نویسندگان

  • Hans L. Bodlaender
  • Bart M. P. Jansen
  • Stefan Kratsch
چکیده

We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L and/or-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical and or or of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by Dell and van Melkebeek (STOC 2010), we show that if an NPhard problem or-cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless NP ⊆ coNP/poly and the polynomial hierarchy collapses. Similarly, an and-cross-composition for Q rules out polynomial kernels for Q under Bodlaender et al.’s and-distillation conjecture. Our technique generalizes and strengthens the recent techniques of using composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. We have similar lower bounds for Feedback Vertex Set andOdd Cycle Transversal under structural parameterizations. After learning of our results, several teams of authors have successfully applied the cross-composition framework to different parameterized problems. For completeness, our presentation of the framework includes several extensions based on this follow-up work. For example, we show how a relaxed version of or-cross-compositions may be used to give lower bounds on the degree of the polynomial in the kernel size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Composition: A New Technique for Kernelization Lower Bounds

We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we sh...

متن کامل

Weak compositions and their applications to polynomial lower bounds for kernelization

We introduce a new form of composition called weak composition that allows us to obtain polynomial kernelization lower-bounds for several natural parameterized problems. Let d ≥ 2 be some constant and let L1, L2 ⊆ {0, 1}∗ × N be two parameterized problems where the unparameterized version of L1 is NP-hard. Assuming coNP 6⊆ NP/poly, our framework essentially states that composing t L1-instances ...

متن کامل

Kernel Bounds for Path and Cycle Problems

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show p...

متن کامل

Kernel Bounds for Structural Parameterizations of Pathwidth

Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graphG has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters. Our main result is that, unless NP ⊆ coNP/poly, Pathwidth admits no polynomial kernelization ev...

متن کامل

Fractals for Kernelization Lower Bounds, With an Application to Length-Bounded Cut Problems

Bodlaender et al.’s [SIDMA 2014] cross-composition technique is a popular method for excluding polynomial-size problem kernels for NP-hard parameterized problems. We present a new technique exploiting triangle-based fractal structures for extending the range of applicability of cross-compositions. Our technique makes it possible to prove new no-polynomial-kernel results for a number of problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014